Отношения свойства отношений примеры. Бинарные отношения. Примеры бинарных отношений. Операции над множествами

В повседневной жизни нам постоянно приходится сталкиваться с понятием «отношения». Отношения – один из способов задания взаимосвязей между элементами множества.

Унарные (одноместные) отношения отражают наличие какого-то одного признака R у элементов множества M (например, «быть красным» на множестве шаров в урне).

Бинарные (двуместные) отношения используются для определения взаимо

связей, которыми характеризуются пары элементов во множестве M .

Например, на множестве людей могут быть заданы следующие отношения: «жить в одном городе», «x работает под руководством y », «быть сыном», «быть старше» и т.д. на множестве чисел: «число a больше числа b », «число a является делителем числа b », «числа a и b дают одинаковый остаток при делении на 3».

В прямом произведении , где A - множество студентов какого-либо вуза, B - множество изучаемых предметов, можно выделить большое подмножество упорядоченных пар (a, b) , обладающих свойством: «студент a изучает предмет b ». Построенное подмножество отражает отношение «изучает», возникающее между множествами студентов и предметов. Число примеров можно продолжить

Отношения между двумя объектами являются предметом исследования экономики, географии, биологии, физики, лингвистики, математики и других наук.

Для строгого математического описания любых связей между элементами двух множеств вводится понятие бинарного отношения.

Бинарным отношением между множествами A и B называется подмножество R прямого произведения . В том случае, когда можно просто говорить об отношении R на A .

Пример 1 . Выпишите упорядоченные пары, принадлежащие бинарным отношениям R 1 и R 2 , заданными на множествах A и : , . Подмножество R 1 состоит из пар: . Подмножество .

Область определения R на есть множество всех элементов из A таких, что для некоторых элементов имеем . Иными словами область определения R есть множество всех первых координат упорядоченных пар из R .

Множество значений отношения R на есть множество всех таких, что для некоторых . Другими словами множество значений R есть множество всех вторых координат упорядоченных пар из R .

В примере 1 для R 1 область определения: , множество значений - . Для R 2 область определения: , множество значений: .

Во многих случаях удобно использовать графическое изображение бинарного отношения. Оно осуществляется двумя способами: с помощью точек на плоскости и с помощью стрелок.

В первом случае выбирают две взаимно перпендикулярные линии в качестве горизонтальной и вертикальной осей. На горизонтальной оси откладывают элементы множества A и через каждую точку проводят вертикальную линию. На вертикальной оси откладывают элементы множества B , через каждую точку проводят горизонтальную линию. Точки пересечения горизонтальных и вертикальных линий изображают элементы прямого произведения .

Пример 5 . Пусть , .

Пусть R 1 задано на перечислением упорядоченных пар: . Бинарное отношение R 2 на множестве задано с помощью правила: упорядочена пара , если a делится на b . Тогда R 2 состоит из пар: .

Бинарные отношения, из примера 2, R 1 и R 2 изображены графически на рис. 6 и рис.7.

Рис. 6 Рис. 7

Чтобы изобразить бинарное отношение с помощью стрелок, слева изображаются точками элементы множества A , справа - множества B . Для каждой пары (a, b) , содержащейся в бинарном отношении R , проводится стрелка от a к b , . Графическое изображение бинарного отношения R 1 , приведенного в примере 6, показано на рис.8.

Рис.8

Бинарные отношения на конечных множествах могут быть заданы матрицами. Предположим, что задано бинарное отношение R между множествами A и B . , .

Строки матрицы нумеруются элементами множества A , а столбцы – элементами множества B . Ячейку матрицы, стоящую на пересечении i - ой строки и j - ого столбца принято обозначать через C ij , а заполняется она следующим образом:

Полученная матрица будет иметь размер .

Пример 6. Пусть задано множество . На множестве задайте списком и матрицей отношение R – «быть строго меньше».

Отношение R как множество содержит все пары элементов (a , b) из M такие, что .

Матрица отношения, построенная по вышеуказанным правилам, имеет следующий вид:

Свойства бинарных отношений:

1. Бинарное отношение R на множестве называетсярефлексивным , если для любого элемента a из M пара (a, a) принадлежит R , т.е. имеет место для любого a из M :

Отношения «жить в одном городе», «учиться в одном вузе», «быть не больше» являются рефлексивными.

2. Бинарное отношение называется антирефлексивным ,если оно не обладает свойством рефлексивности для любых a :

Например, «быть больше», «быть младше» - это антирефлексивные отношения .

3. Бинарное отношение R называется симметричным , если для любых элементов a и b из M из того, что пара (a, b) принадлежит R , , вытекает, что пара (b, a) принадлежит R , т.е.

Симметрична параллельность прямых, т.к. если // , то // . Симметрично отношение «быть равным» на любом множестве или «быть взаимнопростым на N».

Отношение R симметрично тогда и только тогда, когда R=R -1

4. Если для несовпадающих элементов верно отношение , но ложно , то отношение антисимметрично . Можно сказать иначе:

Антисимметричными являются отношения «быть больше», «быть делителем на N», «быть младше».

5. Бинарное отношение R называется транзитивным , если для любых трех элементов из того, что пары (a, b) и (b, c) принадлежат R , следует, что пара (a, c) принадлежит R :

Транзитивны отношения : «быть больше», «быть параллельным», «быть равным» и др.

6. Бинарное отношение R антитранзитивно , если оно не обладает свойством транзитивности.

Например, «быть перпендикулярным» на множестве прямых плоскости ( , , но неверно, что ).

Т.к. бинарное отношение может быть задано не только прямым перечислением пар, но и матрицей, то целесообразно выяснить, какими признаками характеризуется матрица отношения R , если оно: 1) рефлексивно, 2) антирефлексивно, 3)симметрично, 4) антисимметрично, 5) транзитивно.

Пусть R задано на , .R либо выполняется в обе стороны, либо не выполняется вообще. Таким образом, если в матрице стоит единица на пересечении i - ой строки и j - ого столбца, т.е. C ij =1, то она должна стоять и на пересечении j - ой строки и i - ого столбца, т.е. C ji =1, и наоборот, если C ji =1, то C ij =1. Таким образом, матрица симметричного отношения симметрична относительно главной диагонали.

4. R антисимметрично, если из и следует: . Это означает, что в соответствующей матрице ни для каких i , j не выполняется C ij = C ji =1. Таким образом, в матрице антисимметричного отношения отсутствуют единицы, симметричные относительно главной диагонали .

5. Бинарное отношение R на непустом множестве A называется транзитивным если

Вышеприведенное условие должно выполняться для любых элементов матрицы. И, наоборот, если в матрице R имеется хотя бы один элемент C ij =1, для которого данное условие не выполняется, то R не транзитивно.

Бинарным отношением Т(М) на множестве М называется подмножество М 2 = М х М, Т(М) с М 2 . Формальная запись бинарного отношения выглядит шкТ(М) = {(х, у) / (х, у) е Т с М х М}. Обратите внимание: далее мы будем рассматривать только не пустые множества Ми заданные на них непустые бинарные отношения Т(М)

Понятие «бинарное отношение» является более общим понятием, чем функция. Каждая функция представляет собой бинарное отношение, но не каждое бинарное отношение есть функция.

Например, множество пар Р = {(а, Ь), (а, с), (а, б)} является бинарным отношением на множестве {а, Ъ, с, (1), но функцией не является. И наоборот, функция Р= {(а, Ь),(Ь, с), (с1, а)} является бинарным отношением, заданным на множестве {а, Ь, с, с!}.

Мы уже сталкивались с понятием отношения при рассмотрении с (включение) и = (равенство) между множествами. Также неоднократно вами использовались отношения =, Ф, , заданные на множестве чисел - как натуральных, так и целых, рациональных, вещественных и т.д.

Определим несколько понятий относительно бинарного отношения, заданного на множестве М[ 2, 11].

Обратное отношение

Я-"= {(х, у) / (у, х) € Я). (1.14)

Дополнительное отношение

Л = {(*, У) / (х, у) й /?}. (1.15)

Тождественное отношение

и = {(х, х) / X Е М). (1.16)

Универсальное отношение

I ={(х,у)/хеМ,уеМ}. (1.17)

Рассмотрим несколько задач.

Задача 1.8

На множестве М= {а, Ь, с, с1 , е} задано бинарное отношение Т(М ) = = {{а, а ), (а , Ь ), (Ь , с), (с, ?/), (^/, б), {б, е)}. Построить отношения : обратное к Т , дополнительное к Т, тождественное бинарное отношение и и универсальное бинарное отношение /.

Решение.

Для решения этих задач нам нужны только определения.

По определению на множестве М= {а , Ь , с, б, е} обратное к ДЛ/) бинарное отношение должно содержать все обратные пары тождественное бинарное отношение Т~ = {(а , а ), (/?, я), (с, 6), (б, с), (^/, ?/), (с, б)}.

По определению на множестве М= {а, Ь, с , б, е} дополнительное к Т(М ) бинарное отношение должно содержать все пары из декартова произведения М 2 , которые не принадлежат Т(М), т.е. {(а , с), {а, Л), (а, е), (Ь, а), (Ь, Ь), (Ь, б), (Ь, е), (с, а), (с, Ь), (с, с), (с, е), {б, а), (б, Ь), (б, с), (е, а), (е, Ь), (е, с), (е, б), (е, е)}.

По определению на множестве М = {а, Ь, с, б , е} тождественное бинарное отношение и = {(а, а ), (Ь , /?), (с, с), (^/, ^/), (е, е)}.

По определению на множестве М = {а , 6, с, б, е} универсальное бинарное отношение содержит все пары из декартова произведения М 2 , т.е. / = {(а, а), (а , А), (о, с), (а,), (я, е), (Ь, а), (Ь, Ь), (Ь, с), (Ь, б), (Ь, е), (с, а), (с, Л), (с, с), (с, йО, (с, е), (б, а), (б , А), (, с), (,), (^,

Задача 1.9

На множестве М натуральных чисел от 1 до 5 построить бинарное отношение R = {(а , d) / mod(? r , Z>) = 0}, где mod - остаток от деления а на Ь.

Решение.

В соответствии с заданием на множестве натуральных чисел М строим такие пары (а , Ь), где а делится на b без остатка, т.е. mod(?, Ъ ) = = 0. Получаем R = {(1, 1), (2, 2), (3, 3), (4, 4), (5, 5), (2, 1), (3, 1), (4, 1), (5, 1), (4, 2)}.

Существует несколько основных способов задания бинарных отношений: перечисление, графическое представление, матричное представление.

Бинарные отношения R можно задать в виде перечисления, как любое множество пар.

При графическом представлении каждый элемент х и у множества М представляется вершиной, а пара (х, у) представляется дугой изх в у.

Матричным способом бинарные отношения задаются с помощью матрицы смежности. Такой способ наиболее удобен при решении задач с помощью компьютера.

Матрица смежности S представляет собой квадратную матрицу тх/й, где т - мощность множества М, и каждый ее элемент 5(х, у) равен единице, если пара (х, у) принадлежит Т(М), и равен нулю в противном случае.

На рис. 1.3 представлено графическое и матричное представление для Т(М) = {(а , а), (а, Ъ), (b , с), (с, d), (d , d), (d, e)}.

Определяя свойства бинарных отношений, обычно выделяют рефлексивность, симметричность и транзитивность.

Бинарное отношение Т(М) называется рефлексивным тогда и только тогда, когда для каждого элемента х е М пара (х, х) принадлежит этому бинарному отношению Т(М), т.е. Vx е М, 3(х, х) е Т(М).

Рис. 1.3. Графическое (а) и матричное (б) представление множества

Классическим определением этого свойства является следующее утверждение: из того, что элемент х принадлежит множеству М, следует, что пара (х, х) принадлежит бинарному отношению Т(М), заданному на этом множестве, т.е. /хєМ-) (х, х) є Т(М).

Прямо противоположное свойство бинарных отношений называется иррефлексивностью. Бинарное отношение Т(М) называется иррефлексивным тогда и только тогда, когда для каждого элемента х из множества М пара (х, х) не принадлежит этому бинарному отношению, т.е. /х є М -> (х, х) ё Т(М).

Если бинарное отношение Т(М) не обладает ни свойством рефлексивности, ни свойством иррефлексивности, то оно является нерефлексивным.

Например, для множества М - {а, Ь, с , ^/, е} бинарное отношение Т Х (М) = {(а , а), (а, Ь), (Ь, Ь), (Ь, с), (с, с), (с, сі), (сі, сі), (сі , с), (е, е )} является рефлексивным, Т 2 (М) = {(а , Ь), (Ь , с), (с, сі), (сі, с), (сі, е )} является иррефлексивным, а Т 3 (М) = {(а , а ), (а, Ь), (Ь , с), (с, сі), (сі , ?/), (?/, с)} является нерефлексивным.

Если во множестве М содержится хотя бы один элемент х, то правильная классификация не представляет сложности. Обратите внимание: для однозначности решения задачи классификации свойство рефлексивности следует определять только для непустых множеств!

В соответствии с этим бинарное отношение на пустом множестве является нерефлексивным, так же как нерефлексивным будет пустое бинарное отношение.

Бинарное отношение Т(М) называется симметричным тогда и только тогда, когда для каждой пары различных элементов (х, у), принадлежащей бинарному отношению Т(М), обратная пара (у, х) также принадлежит этому бинарному отношению, т.е. /(х, у) є Т(М), 3(у, х) є Т(М). Свойство симметричности мы определяем только для множеств, содержащих хотя бы два различных элемента, и непустых бинарных отношений.

Классическим определением свойства симметричности является следующее утверждение: из того, что пара (х, у) принадлежит Т(М), следует, что обратная пара (у, х) также принадлежит Т(М), т.е. /(х, у) є Т(М) -> (у, х) є Т(М). В этом случае еслих = у, то свойство симметричности плавно переходит в рефлексивность.

Прямо противоположное свойство бинарных отношений называется антисимметричностью. Бинарное отношение Т(М) называется антисимметричным тогда и только тогда, когда для каждой пары различных элементов х и у пара (у, х) не принадлежит этому бинарному отношению, т.е. /(х, у) є Т(М), (у, х) і Т(М).

Классическим определением антисимметричности можно считать следующее . Из того, что в антисимметричном бинарном отношении Т(М) для любой пары (х, у) обратная пара (у, х) также принадлежит Т(М), следует, что х = у, т.е. ((х, у) е Т(М), (у , х) е Т(М )) -> -> х = у.

Если бинарное отношение Т(М ) не обладает ни свойством симметричности, ни свойством антисимметричности, то оно является несимметричным.

В случае когда Мили Т(М) пусты или М содержит единственный элемент х, наше бинарное отношение одновременно является как симметричным, так и антисимметричным. Для однозначности решения задачи классификации множество М должно содержать хотя бы два различных элемента х и у. Тогда бинарные отношения на пустом множестве, так же как на множествах с одним элементом, являются несимметричными.

М - {а, Ь, с, ^/, е}. Бинарное отношение Г, = {(а , а), (а, Ь ), (Ь , а ), (с, с1), (с /, с), (е , с), (с, е)} является симметричным, Т 2 = {(а, а), (а, Ь), (с, с1), (е , с), (с, Ь ), (Ь , е )} является антисимметричным, Т 3 = {(а, а ), (а , Ь ), (6, я), (с, с1), (е , с), (с, я)} - несимметричным. Обратите внимание: петля (а , я) никак не влияет на симметричность и антисимметричность.

Свойство транзитивности определяется на трех различных элементах х, у и I множества М. Бинарное отношение Т(М) называется транзитивным тогда и только тогда, когда для каждых двух пар различных элементов (х, у) и (у, О, принадлежащих бинарному отношению Т(М), пара (х, ?) также принадлежит этому бинарному отношению, т.е. (/(х, у) е Т(М), /(у, I) е Т(М)), 3(х, I) е Т(М). Таким образом, между элементами х и ^ существует транзитивное замыкание («транзит»), которое «спрямляет» путь длины два (х, у) и (у, z)?

Классическое определение свойства транзитивности формулируется следующим образом: из того, что в транзитивном бинарном отношении Т(М) существует пара (х, у) и пара (у, I), следует, что пара (х, I) также принадлежит этому бинарному отношению, т.е. ((х, у) е Т(М ), (у, I) е Т(М)) -э (х, I) е Т(М ).

Бинарное отношение Т(М) называется интранзитивным тогда и только тогда, когда для каждых двух пар элементов (х, у) и (у, ?), принадлежащих бинарному отношению Т(М), пара (х, не принадлежит этому бинарному отношению, т.е. (/(х, у) е Т(М), /(у, I) е Т{М)), (х, I) ? Т(М). Таким образом, в интранзитивном бинарном отношении ни один имеющийся путь длины два не обладает транзитивным замыканием!

Классическое определение свойства интранзитивности формулируется следующим образом: из того, что в транзитивном бинарном отношении Т(М) существует пара (х, у) и пара (у, I), следует, что пара (х, I) не принадлежит этому бинарному отношению, т.е. ((*, у) е Т(М), (у, I) е Т(М)) -э (х, I) ? Т(М).

Если бинарное отношение Т(М) не обладает ни свойством транзитивности, ни свойством интранзитивности, то оно является нетранзитивным.

Например, рассмотрим множество М - {а , Ь, с, б, е}. Бинарное отношение Т х = {(а , а), (а , Ь ), (а , с), (Ь , с), (с, с), (е , с)} является транзитивным, Т 2 = {(я, я), (я, 6), (6, с), (с, 1), (?, 0} является интранзитив-ным, Т 3 = {(а , я), (я, 6), (6, с), (^/, с), (я, с), (е , ?/)} - нетранзитивным.

Задача 1.10

На множестве М х - {а, Ь, с, б, е} построить бинарное отношение Я с заданными свойствами : нерефлексивности , антисимметричности и нетранзитивности.

Решение.

Правильных решений этой задачи целое множество! Построим одно из них. В нашем бинарном отношении на некоторых вершинах, но не на всех, должны быть петли; не должно быть ни одной обратной дуги; должны быть хотя бы два пути длины 2, из них хотя бы один не иметь транзитивного замыкания. Таким образом, получаем Я = {(а, а), (Ь , Ь ), (а , Ь ), (Ь , с), (с, б), (б, е), (а, с), (с, е)}.

Задача 1.11

Определить свойства бинарного отношения Т, заданного на множестве М 2 = {а, Ь, с, б, е}, представленного ранее на рис. 1.3.

Решение.

В данном бинарном отношении на двух вершинах есть петли, на трех петель нет, следовательно, бинарное отношении нерефлексивно. Нет ни одной обратной дуги, следовательно, бинарное отношение антисимметрично. Бинарное отношение обладает несколькими путями длины два, но ни один из них не обладает транзитивным замыканием - Т интранзитивно.

Основы дискретной математики.

Понятие множества. Отношение между множествами.

Множество – совокупность объектов, обладающих определенным свойством, объединенных в единое целое.

Объекты, составляющие множество называются элементами множества. Для того чтобы некоторую совокупность объектов можно было называть множеством должны выполняться следующие условия:

· Должно существовать правило, по которому моно определить принадлежит ли элемент к данной совокупности.

· Должно существовать правило, по которому элементы можно отличить друг от друга.

Множества обозначаются заглавными буквами, а его элементы маленькими. Способы задания множеств:

· Перечисление элементов множества. - для конечных множеств.

· Указание характеристического свойства .

Пустым множеством – называется множество, не содержащее ни одного элемента (Ø).

Два множества называются равными, если они состоят из одних и тех же элементов. , A=B

Множество B называется подмножеством множества А ( , тогда и только тогда когда все элементы множества B принадлежат множеству A .

Например: , B =>

Свойство:

Примечание: обычно рассматривают подмножество одного и того е множества, которое называется универсальным (u). Универсальное множество содержит все элементы.

Операции над множествами.

A
B
1. Объединением 2-х множеств А и В называется такое множество, которому принадлежат элементы множества А или множества В (элементы хотя бы одного из множеств).

2.Пересечением 2-х множеств называется новое множество, состоящее из элементов, одновременно принадлежат и первому и второму множеству.

Н-р: , ,

Свойство: операции объединения и пересечения.

· Коммутативность.

· Ассоциативность. ;

· Дистрибутивный. ;

U
4.Дополнение . Если А – подмножество универсального множества U , то дополнением множества А до множества U (обозначается ) называется множество состоящее из тех элементов множества U , которые не принадлежат множеству А .

Бинарные отношения и их свойства.

Пусть А и В это множества производной природы, рассмотрим упорядоченную пару элементов (а, в) а ϵ А, в ϵ В можно рассматривать упорядоченные «энки».

(а 1 , а 2 , а 3 ,…а n) , где а 1 ϵ А 1 ; а 2 ϵ А 2 ; …; а n ϵ А n ;

Декартовым (прямым) произведением множеств А 1 , А 2 , …, А n , называется мн-во, которое состоит из упорядоченных n k вида .

Н-р: М = {1,2,3}

М× М= М 2 = {(1,1);(1,2);(1,3); (2,1);(2,2);(2,3); (3,1);(3,2);(3,3)}.

Подмножества декартова произведения называется отношением степени n или энарным отношением. Если n =2, то рассматривают бинарные отношения. При чем говорят, что а 1 , а 2 находятся в бинарном отношении R , когда а 1 R а 2.

Бинарным отношением на множестве M называется подмножество прямого произведения множества n самого на себя.

М× М= М 2 = {(a, b )| a, b ϵ M } в предыдущем примере отношение меньше на множестве М порождает следующее множество: {(1,2);(1,3); (2,3)}

Бинарные отношения обладают различными свойствами в том числе:

· Рефлексивность: .

· Антирефлексивность (иррефлексивность): .

· Симметричность: .

· Антисимметричность: .

· Транзитивность: .

· Асимметричность: .

Виды отношений.

· Отношение эквивалентности;

· Отношение порядка.

v Рефлексивное транзитивное отношение называется отношением квазипорядка.

v Рефлексивное симметричное транзитивное отношение называется отношением эквивалентности.

v Рефлексивное антисимметричное транзитивное отношение называется отношением (частичного) порядка.

v Антирефлексивное антисимметричное транзитивное отношение называется отношением строгого порядка.

Определение . Бинарным отношением R называется подмножество пар (a,b)∈R декартова произведения A×B, т. е. R⊆A×B . При этом множество A называют областью определения отношения R, множество B – областью значений.

Обозначение: aRb (т. е. a и b находятся в отношении R). /

Замечание : если A = B , то говорят, что R есть отношение на множестве A .

Способы задания бинарных отношений

1. Списком (перечислением пар), для которых это отношение выполняется.

2. Матрицей. Бинарному отношению R ∈ A × A , где A = (a 1 , a 2 ,..., a n), соответствует квадратная матрица порядка n , в которой элемент c ij , стоящий на пересечении i-й строки и j-го столбца, равен 1, если между a i и a j имеет место отношение R , или 0, если оно отсутствует:

Свойства отношений

Пусть R – отношение на множестве A, R ∈ A×A . Тогда отношение R:

    рефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефлексивного отношения содержит только единицы);

    антирефлексивно, если Ɐ a ∈ A: a R a (главная диагональ матрицы рефле сивного отношения содержит только нули);

    симметрично, если Ɐ a , b ∈ A: a R b ⇒ b R a (матрица такого отношения симметрична относительно главной диагонали, т.е. c ij c ji);

    антисимметрично, если Ɐ a, b ∈ A: a R b & b R a ⇒ a = b (в матрице такого отношения отсутствуют единицы, симметричные относительно главной диагонали);

    транзитивно, если Ɐ a, b, c ∈ A: a R b & b R c ⇒ a R c (в матрице такого отношения должно выполняться условие: если в i-й строке стоит единица, например в j-ой координате (столбце) строки, т. е. c ij = 1 , то всем единицам в j-ой строке (пусть этим единицам соответствуют k е координаты такие, что, c jk = 1) должны соответствовать единицы в i-й строке в тех же k-х координатах, т. е. c ik = 1 (и, может быть, ещё и в других координатах).

Задача 3.1. Определите свойства отношения R – «быть делителем», заданного на множестве натуральных чисел.

Решение.

отношение R = {(a,b):a делитель b}:

    рефлексивно, не антирефлексивно, так как любое число делит само себя без остатка: a/a = 1 для всех a∈N ;

    не симметрично, антисимметрично, например, 2 делитель 4, но 4 не является делителем 2;

    транзитивно,таккакесли b/a ∈ N и c/b ∈ N, то c/a = b/a ⋅ c/b ∈ N, например, если 6/3 = 2∈N и 18/6 = 3∈N, то 18/3 = 18/6⋅6/3 = 6∈N.

Задача 3.2. Определите свойства отношения R – «быть братом», заданного на множестве людей.
Решение.

Отношение R = {(a,b):a - брат b}:

    не рефлексивно, антирефлексивно из-за очевидного отсутствия aRa для всех a;

    не симметрично, так как в общем случае между братом a и сестрой b имеет место aRb , но не bRa ;

    не антисимметрично, так как если a и b –братья, то aRb и bRa, но a≠b;

    транзитивно, если называть братьями людей, имеющих общих родителей (отца и мать).

Задача 3.3. Определите свойства отношения R – «быть начальником», заданного на множестве элементов структуры

Решение.

Отношение R = {(a,b) : a - начальник b}:

  • не рефлексивно, антирефлексивно, если в конкретной интерпретации не имеет смысла;
  • не симметрично, антисимметрично, так как для всех a≠b не выполняется одновременно aRb и bRa;
  • транзитивно, так как если a начальник b и b начальник c , то a начальник c .

Определите свойства отношения R i , заданного на множестве M i матрицей, если:

  1. R 1 «иметь один и тот же остаток от деления на 5»; M 1 множество натуральных чисел.
  2. R 2 «быть равным»; M 2 множество натуральных чисел.
  3. R 3 «жить в одном городе»; M 3 множество людей.
  4. R 4 «быть знакомым»; M 4 множество людей.
  5. R 5 {(a,b):(a-b) - чётное; M 5 множество чисел {1,2,3,4,5,6,7,8,9}.
  6. R 6 {(a,b):(a+b) - чётное; M 6 множество чисел {1,2,3,4,5,6,7,8,9}.
  7. R 7 {(a,b):(a+1) - делитель (a+b)} ; M 7 - множество {1,2,3,4,5,6,7,8,9}.
  8. R 8 {(a,b):a - делитель (a+b),a≠1}; M 8 - множество натуральных чисел.
  9. R 9 «быть сестрой»; M 9 - множество людей.
  10. R 10 «быть дочерью»; M 10 - множество людей.

Операции над бинарными отношениями

Пусть R 1 , R 1 есть отношения, заданные на множестве A .

    объединение R 1 ∪ R 2: R 1 ∪ R 2 = {(a,b) : (a,b) ∈ R 1 или (a,b) ∈ R 2 } ;

    пересечение R 1 ∩ R 2: R 1 ∩ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∈ R 2 } ;

    разность R 1 \ R 2: R 1 \ R 2 = {(a,b) : (a,b) ∈ R 1 и (a,b) ∉ R 2 } ;

    универсальное отношение U: = {(a;b)/a ∈ A & b ∈ A}. ;

    дополнение R 1 U \ R 1 , где U = A × A;

    тождественное отношение I: = {(a;a) / a ∈ A};

    обратное отношение R -11 : R -11 = {(a,b) : (b,a) ∈ R 1 };

    композиция R 1 º R 2: R 1 º R 2: = {(a,b) / a ∈ A&b ∈ B& ∃ c ∈ C: aR 1 c & c R 2 b}, где R 1 ⊂ A × C и R 2 ⊂ C × B;

Определение. Степенью отношения R на множестве A называется его композиция с самим собой.

Обозначение:

Определение . Если R ⊂ A × B , то R º R -1 называется ядром отношения R .

Теорема 3.1. Пусть R ⊂ A × A – отношение, заданное на множестве A .

  1. R рефлексивно тогда и только тогда, (далее используется знак ⇔) когда I ⊂ R.
  2. R симметрично ⇔ R = R -1 .
  3. R транзитивно ⇔ R º R ⊂ R
  4. R антисимметрично ⇔ R ⌒ R -1 ⊂ I .
  5. R антирефлексивно ⇔ R ⌒ I = ∅ .

Задача 3.4 . Пусть R - отношение между множествами {1,2,3} и {1,2,3,4}, заданное перечислением пар: R = {(1,1), (2,3), (2,4), (3,1), (3,4)}. Кроме того, S - отношение между множествами S = {(1,1), (1,2), (2,1), (3,1), (4,2)}. Вычислите R -1 , S -1 и S º R. Проверьте, что (S º R) -1 = R -1 , S -1 .

Решение.
R -1 = {(1,1), (1,3), (3,2), (4,2), (4,3)};
S -1 = {(1,1), (1,2), (1,3), (2,1), (2,4)};
S º R = {(1,1), (1,2), (2,1), (2,2), (3,1), (3,2)};
(S º R) -1 = {(1,1), (1,2), (1,3), (2,1), (2,2), (2,3)};
R -1 º S -1 = {(1,1), (1,2), (1,3), (2 ,1), (2,2), (2,3)} = (S º R) -1 .

Задача 3.5 . Пусть R отношение «...родитель...», а S отношение «...брат...» на множестве всех людей. Дайте краткое словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 и R º R.

Решение.

R -1 - отношение«...ребёнок...»;

S -1 - отношение«...брат или сестра...»;

R º S - отношение «...родитель...»;

S -1 º R -1 - отношение «...ребёнок...»

R º R - отношение «...бабушка или дедушка...»

Задачи для самостоятельного решения

1) Пусть R - отношение «...отец...», а S - отношение «...сестра...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , R º R.

2) Пусть R - отношение «...брат...», а S - отношение «...мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , S º S.

3) Пусть R - отношение «...дед...», а S - отношение «...сын...» на множестве всех людей. Дайте словесное описание отношениям:

4) Пусть R - отношение «...дочь...», а S - отношение «...бабушка...» на множе- стве всех людей. Дайте словесное описание отношениям:

5) Пусть R - отношение «...племянница...», а S - отношение «...отец...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

6) Пусть R - отношение «сестра...», а S - отношение «мать...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

7) Пусть R - отношение «...мать...», а S - отношение «...сестра...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S1, R º S, S1 º R1, S º S.

8) Пусть R - отношение «...сын...», а S - отношение «...дед...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

9) Пусть R - отношение «...сестра...», а S - отношение «...отец...» на множе- стве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , R º S, S -1 º R -1 , S º S.

10) Пусть R - отношение «...мать...», а S - отношение «...брат...» на множестве всех людей. Дайте словесное описание отношениям:

R -1 , S -1 , S º R, R -1 º S -1 , R º R.

1. Рефлексивность:

2. Слабая рефлексивность:

3. Сильная рефлексивность:

4. Антирефлексивность:

5. Слабая антирефлексивность:

6. Сильная антирефлексивность:

7. Симметричность:

8. Антисимметричность:

9. Асимметричность:

10. Сильная линейность:

11. Слабая линейность:

12. Транзитивность:

Рефлексивность, свойство бинарных (двуместных, двучленных) отношений, выражающее выполнимость их для пар объектов с совпадающими членами (так сказать, между объектом и его "зеркальным отражением"): отношение R называется рефлексивным, если для любого объекта х из области его определения выполняется xRx. Типичные и наиболее важные примеры рефлексивных отношений: отношения типа равенства (тождества, эквивалентности, подобия и т.п.: любой предмет равен самому себе) и отношения нестрогого порядка (любой предмет не меньше и не больше самого себя). Интуитивные представления о "равенстве" (эквивалентности, подобии и т.п.), очевидным образом наделяющие его свойствами симметричности и транзитивности, "вынуждают" и свойство Р., поскольку последнее свойство следует из первых двух. Поэтому многие употребительные в математике отношения, по определению Р. не обладающие, оказывается естественным доопределить таким образом, чтобы они становились рефлексивными, например, считать, что каждая прямая или плоскость параллельна самой себе, и т.п.

Глава 1. Элементы теории множеств

1.1 Множества

Наиболее простая структура данных, используемая в математике, имеет место в случае, когда между отдельными изолированными данными отсутствуют какие-либо взаимосвязи. Совокупность таких данных представляет собой множество . Понятие множества является неопределяемым понятием. Множество не обладает внутренней структурой. Множество можно представить себе как совокупность элементов, обладающих некоторым общим свойством. Для того чтобы некоторую совокупность элементов можно было назвать множеством, необходимо, чтобы выполнялись следующие условия:

Должно существовать правило, позволяющее определить, принадлежит ли указанный элемент данной совокупности.

Должно существовать правило, позволяющее отличать элементы друг от друга. (Это, в частности, означает, что множество не может содержать двух одинаковых элементов).

Множества обычно обозначаются заглавными латинскими буквами. Если элемент

принадлежит множеству , то это обозначается:

Если каждый элемент множества

является также и элементом множества , то говорят, что множество является подмножеством множества :

Подмножество

множества называется собственным подмножеством , если

Используя понятие множества можно построить более сложные и содержательные объекты.

1.2 Операции над множествами

Основными операциями над множествами являются объединение , пересечение и разность .

Определение 1 . Объединением

Определение 2 . Пересечением двух множеств называется новое множество

Определение 3 . Разностью двух множеств называется новое множество

Если класс объектов, на которых определяются различные множества обозначить

(Универсум ), то дополнением множества называют разность упорядоченную n-ку , называют мощностью отношения .

Замечание. Понятие отношения является очень важным не только с математической точки зрения. Понятие отношения фактически лежит в основе всей реляционной теории баз данных. Как будет показано ниже, отношения являются математическим аналогом таблиц . Сам термин "реляционное представление данных", впервые введенный Коддом , происходит от термина relation , понимаемом именно в смысле этого определения.

Т. к. любое множество можно рассматривать как декартовое произведение степени 1, то любое подмножество, как и любое множество, можно считать отношением степени 1. Это не очень интересный пример, свидетельствующий лишь о том, что термины "отношение степени 1" и "подмножество" являются синонимами. Нетривиальность понятия отношения проявляется, когда степень отношения больше 1. Ключевыми здесь являются два момента:

Во-первых , все элементы отношения есть однотипные кортежи. Однотипность кортежей позволяет считать их аналогами строк в простой таблице, т.е. в такой таблице, в которой все строки состоят из одинакового числа ячеек и в соответствующих ячейках содержатся одинаковые типы данных. Например, отношение, состоящее из трех следующих кортежей { (1, "Иванов", 1000), (2, "Петров", 2000), (3, "Сидоров", 3000) } можно считать таблицей, содержащей данные о сотрудниках и их зарплатах. Такая таблица будет иметь три строки и три колонки, причем в каждой колонке содержатся данные одного типа.

В противоположность этому рассмотрим множество { (1), (1,2), (1, 2,3) }, состоящее из разнотипных числовых кортежей. Это множество не является отношением ни в

, ни в , ни в . Из кортежей, входящих в это множество нельзя составить простую таблицу. Правда, можно считать это множество отношением степени 1 на множестве всех возможных числовых кортежей всех возможных степеней